Classifying fMRI-derived resting-state connectivity patterns according to their daily rhythmicity

نویسندگان

  • Janusch Blautzik
  • Céline Vetter
  • Isabella Peres
  • Evgeny Gutyrchik
  • Daniel Keeser
  • Albert Berman
  • Valerie Kirsch
  • Sophia Mueller
  • Ernst Pöppel
  • Maximilian Reiser
  • Till Roenneberg
  • Thomas Meindl
چکیده

The vast majority of biological functions express rhythmic fluctuations across the 24-hour day. We investigated the degree of daily modulation across fMRI (functional Magnetic Resonance Imaging) derived resting-state data in 15 subjects by evaluating the time courses of 20 connectivity patterns over 8h (4 sessions). For each subject, we determined the chronotype, which describes the relationship between the individual circadian rhythm and the local time. We could therefore analyze the daily time course of the connectivity patterns controlling for internal time. Furthermore, as the participants' scan times were staggered as a function of their chronotype, we prevented sleep deprivation and kept time awake constant across subjects. Individual functional connectivity within each connectivity pattern was defined at each session as connectivity strength measured by a mean z-value and, in addition, as the spatial extent expressed by the number of activated voxels. Highly rhythmic connectivity patterns included two sub-systems of the Default-Mode Network (DMN) and a network extending over sensori-motor regions. The network characterized as the most stable across the day is mainly associated with processing of executive control. We conclude that the degree of daily modulation largely varies across fMRI derived resting-state connectivity patterns, ranging from highly rhythmic to stable. This finding should be considered when interpreting results from fMRI studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging

Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...

متن کامل

Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review

Ongoing debate exists within the resting-state functional MRI (fMRI) literature over how intrinsic connectivity is altered in the autistic brain, with reports of general over-connectivity, under-connectivity, and/or a combination of both. Classifying autism using brain connectivity is complicated by the heterogeneous nature of the condition, allowing for the possibility of widely variable conne...

متن کامل

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

Alterations in Hippocampal Functional Connectivity in patients with Mesial Temporal Sclerosis

Introduction: Medial temporal sclerosis (MTS) is a form of mesial temporal lobe epilepsy (mTLE). It is typically characterized by structural alterations in hippocampus (HC) and related mesial temporal lobe (MTL) network. Resting state functional connectivity (RSFC) is considered an ideal technique in quantifying the dysfunction and maladaptation in MTL network. It is well- dem...

متن کامل

طبقه‌بندی بیماری پارکینسون بر مبنای شاخص‌های درون-ناحیه‌ای و بین-ناحیه‌ای شبکه حرکتی مغز با استفاده از دادگان fMRI حالت استراحت

Parkinson’s disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness of movement. Recent studies on investigation of the brain function show that there are spontaneous fluctuations between regions at rest as resting state network affected in various disorders. In this paper, we used amplitude of low frequency fluctuation (ALFF) for the study of intra-r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2013